Imperial College
London

10 - Pattern & Feature Matching

Prof Peter YK Cheung

Dyson School of Design Engineering

URL: www.ee.ic.ac.uk/pcheung/teaching/DE4 DVS/
E-mail: p.cheung@imperial.ac.uk

PYKC 25 Feb 2025 DE4 — Design of Visual Systems Lecture 10 Slide 1



Multi-resolution Pyramid

¢ Important to process image at the appropriate resolution.
¢ Obijective: good accuracy with minimal computation.
¢ Achieved by rescaling the image through sub-sampling or interpolation.
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Beware of Aliasing

¢ Image size halved by taking every other pixel in both directions.
¢ High frequency patten now appears as low frequency.
¢ This is the result of ALIASING (DEZ2 Electronics 2).
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Aliasing creates false pattens

Subsampling by
dropping pixels

Source: F. Durand
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Right way to Down-sample

convolution
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Right way to Up-sample

Expand image

¢ Nearest neighbour
¢ Bilinear
¢ Bicubic
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Comparison of Right and Wrong way of resizing image

Dropping pixels

Gaussian filter then
dropping pxiels

Source: S. Seitz
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Template matching Problem

Given a template (e.g. image of an object), find the location in a large image.
Usually template is small, image is large.

Assumption: template is an exact copy of a part of the large image.
Particularly useful for image alignment (registration).
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Template matching by Normalized Cross Correlation

¢ Given an image f(x,y), and a template t(u, v), cross correlation is the same
as performing image filter with t(u, v) as the kernel (see Lecture 5, slides 2-7.

¢ However, here we use normalized cross correlation (NCC) y, where y is
normalised to the range of +1 to -1.

¢ The definition of y is:

Zx,y(f(xr y) - fu»v) (t(x —u,y — U) - a
\[Zx;Y(f(x' :V) — f:uv )2 Zx,y(t(x —u,y — V) — E)z

y(x,y) =

¢ Wwhere:
furv is the mean value of f(x,y) within the area of the template t(u, v), and
t is the mean value of the template.

¢ Using this normalization, y(x, y) is independent of changes in brightness
(mean) or contrast (standard deviation) of the image.
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The Dali painting example

normalized

Template )
cross correlation

of crown

¢ Normalized cross correlation works
for exact template matching.

¢ Does not work with different sizes i
and orientation. oo

¢ Painting has three other crowns that <«

are NOT matched. MWW
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General feature matching problem

¢ Problems in matching objects in general:
1. Different size (or scale)
2. Different orientation
3. Different brightness and contrast
4. Partially covered (occlusion)
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Harder Visual Processing
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What are interesting features?

¢ To handle a scene, need to identify and locate interesting features.
¢ These could be:

1. Points, particularly corners

2. Lines or shapes (e.g. circles)

3. Blobs or patches

Line and edges
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SIFT — A Blob Feature Detection Method

¢ SIFT stands for Scale Invariant Feature Transform.

¢ Useful for image alignment (registration), object tracking and 2D object
recognition.

¢ Proposed by Lowe in 2004 to identify interesting blob features that are
independent of their size, orientation and intensity (paper on webpage).

¢ Output from SIFT detector are these properties of features:
1. Locations of the blobs
2. Scales (or sizes) of the blobs “ -
. . : . _
3. O.rlentatlons of the t.)lobs p 0@. %
4. Signatures or descriptors for the blobs v u#ln
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Recap on Gaussian Filter — noise removal

1D image [
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1st Derivative of Gaussian — Edge detection

1D image f

1st Derivative
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2"d Derivative of Gaussian — Edge detection

1D image f
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Different types of Blobs in 1D
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[\ ¢ Different shape and SIZES.
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Normalized 2"9 Derivative of Gaussian

1D image of blob Blob A Blob B Blob C
f / \

Gaussian kernel
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Effect of changing o on Normalized 2"9 Derivatives
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Characteristic Scale of Blobs

1D image of blob : Blob A Blob B Blob C
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Characteristic Scale Measures Size of a Blob

*

' g, = 0y op = 20,

Characteristic Scale (¢*)

os = 30,

¢ Characteristic Scale: The ¢ value at which g-normalised 2" derivative
reaches its peak value.

¢ Characteristic Scale is a valid measure of the SIZE of the blob. That is:

sizeof blobA o,

size of blobB "~ a;.
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Summary on Steps of Blob Detection in 1D

1. Given a 1D signal f(x), convolve it with o-normalized 2" derivative function:

62
Compute: ¢* e

2. Find (x*,0*) = max |02
(x,0)

3. Blob position = x*

* f(x) at different scales (o0, 04, ..., 0%).

ey f ()

4. Blobsize=0c¢"
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Blob Detection in 2D

¢ For 2D image I(x,y), use Normalized Laplacian of Gaussian (NLoG) for
blob detection: Canssan

Laplacian

¢ Location of blobs found by Local Extrema after applying NLoG at many
scales.

PYKC 25 Feb 2025 DE4 — Design of Visual Systems Lecture 10 Slide 24



Example of Detecting an Interesting Blob

(NLoG * I(x,y))

® Extremum
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Characteristic Scale (¢*)

Source: Lindeberg

PYKC 25 Feb 2025 DE4 — Design of Visual Systems Lecture 10 Slide 25



Example of Detecting a non-blob

O

5(x,,00) S(x,y,01) S(x,y,07) S(x,y,03)

a?V%S(x,y,0)
(NLoG * I(x,y))

No Strong Extremum = No Blob

Source: Lindeberg
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Summary on Steps of Blob Detection in 2D

1. Given an image I(x,y), convolve it with NLoG at many scales of o .
Compute: (a2 V?n,) * I(x,y) at different scale (g, o4, ..., %).

2. Find (x*,y*,06*) = max |(c2 V?n,) * I(x,y)|
(x,y,0)

3. Blob position = (x*,y*)

4. Blobsize=0c¢"
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DoG is fast approximation of NLoG

+ |Is there a faster way to compute NLoG?

¢ Difference of Gaussian (DoG): e
DoG = (ng, —ngy) = (s — 1)a?Vn_o

¢ s is different multipliers (octave) of o.

= Laplacian
= DoG

| |
4 3 ¥4 1 0 1 2 3 4 5

DoG = (s — 1)NLoG |
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Extracting SIFT Interest Points (1)

Gaussian Scale Difference of Gaussians

Space (DoG)
S(x,y,0) ~ (s —1)o2V2S(x,y, 0)

Source: Lowe
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Extracting SIFT Interest Points (2)

Difference of Gaussians

Candidates for
Interest Point

Find peaks
(DoG)

~ (s — 1)a2V2S(x,y,0)

(extrema) in every
3x3 grid

Source: Lowe
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Extracting SIFT Interest Points (3)

Annotated SIFT Features
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Source: Lowe
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Example of SIFT Interest Points Detector
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SIFT Scale Invariance

Ratio of Blob Sizes

Scale(o) Scale(o)

Source: Mikolajczyk
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Detect Feature Orientation

Principal Orientation

¢ Image gradient directions is calculated by:
,01/0y
dl/0x

6 = tan™

¢ Build histogram of direction for every pixel (8 directions).

¢ Principle Orientation is the one with highest count.
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SIFT Rotation Invariance

¢ Correct rotation based on principal orientation.
¢ We can now match objects of different scale and different orientation.
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SIFT Descriptor (signature)

Image gradients

ottt Ll In.a0senll

N =yt \N=p )\ >t \’-/ \ =7t \N=r}
¢ Normalized Histogram is the featured descriptor or signature.
¢ ltis invariant to Rotation, Scaling and Brightness.
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Matching of SIFT Descriptors

¢ Goal, match two SIFT features from two images, with descriptors H; (k) and
H, (k). (These are histograms of orientations.)

¢ Possible measures:
1. L2 Distance:

d(Hy, Hy) = \/Zk(H1(k) — H, (k))z. (Smaller d = better match.)
2. Normalized Correlation:
Yx[(Hy(k)—Hy)(Ho (k)—Hy)]
(ZRCH GO=H2 2[5, (Ho () =Hy)?

d(H1;H2) —

where H; = % N_ H;(k). (Larger d = better match.)

3. Intersection:

d(Hy, Hy) = ) min(H, (), Hy ()
k

(Larger d = better match.)
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SIFT Results: Scale Invariance

Original
Image

1/4 size
Image
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SIFT Results: Rotation Invariance
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Photo Stitching using SIFT (1)

Matched SIFT

Interest Points
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Photo Stitching using SIFT (2)
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SIFT for tracking
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Matlab Support for Feature Detection

¢ Many other feature detection methods have been proposed since Lowe’s
paper in 2004.

¢ Here are the different algorithms that are implemented in Matlab, some of
these are extensions to SIFT.

Detector Feature Type Function Scale Independent
FAST [1] Corner detectFASTFeatures No
Minimum eigenvalue Corner detectMinEigenFeatur No
algorithm [4]

Corner detector [3] Corner detectHarrisFeatures No
SIFT [14] Blob detectSIFTFeatures Yes
SURF [11] Blob detectSURFFeatures Yes
KAZE [12] Blob detectKAZEFeatures Yes
BRISK [6] Corner detectBRISKFeatures Yes
MSER [8] Region with uniform detectMSERFeatures Yes

intensity
ORB [13] Corner detectORBFeatures No
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