

10 – Pattern & Feature Matching

Prof Peter YK Cheung

Dyson School of Design Engineering

URL: www.ee.ic.ac.uk/pcheung/teaching/DE4_DVS/ E-mail: p.cheung@imperial.ac.uk

PYKC 25 Feb 2025

Lecture 10 Slide 1

Multi-resolution Pyramid

- Important to process image at the appropriate resolution.
- Objective: good accuracy with minimal computation.
- Achieved by rescaling the image through **sub-sampling** or **interpolation**.

Beware of Aliasing

- Image size halved by taking every other pixel in both directions.
- High frequency patten now appears as low frequency.
- This is the result of ALIASING (DE2 Electronics 2).

Aliasing creates false pattens

Source: F. Durand

Right way to Down-sample

Right way to Up-sample

Comparison of Right and Wrong way of resizing image

Dropping pixels

Gaussian filter then dropping pxiels

Source: S. Seitz

Lecture 10 Slide 7

Template matching Problem

- Given a template (e.g. image of an object), find the location in a large image.
- Usually template is small, image is large.
- Assumption: template is an exact copy of a part of the large image.
- Particularly useful for image alignment (registration).

Template matching by Normalized Cross Correlation

- Given an image f(x, y), and a template t(u, v), cross correlation is the same as performing image filter with t(u, v) as the kernel (see Lecture 5, slides 2-7.
- However, here we use normalized cross correlation (NCC) γ, where γ is normalised to the range of +1 to -1.
- The definition of γ is:

$$\gamma(x,y) = \frac{\sum_{x,y} (f(x,y) - \bar{f}_{u,v}) (t(x-u,y-v) - \bar{t})}{\sqrt{\sum_{x,y} (f(x,y) - \bar{f}_{u,v})^2 \sum_{x,y} (t(x-u,y-v) - \bar{t})^2}}$$

where:

 \overline{f}_{uv} is the mean value of f(x, y) within the area of the template t(u, v), and \overline{t} is the mean value of the template.

 Using this normalization, γ(x, y) is independent of changes in brightness (mean) or contrast (standard deviation) of the image.

The Dali painting example

400

Normalized cross correlation works for exact template matching.

- Does not work with different sizes and orientation.
- Painting has three other crowns that are NOT matched.

100

200

300

400

600 500

General feature matching problem

Problems in matching objects in general:

- 1. Different size (or scale)
- 2. Different orientation
- 3. Different brightness and contrast
- 4. Partially covered (occlusion)

Harder Visual Processing

PYKC 25 Feb 2025

Lecture 10 Slide 12

What are interesting features?

- To handle a scene, need to identify and locate interesting features.
- These could be:
 - 1. Points, particularly corners
 - 2. Lines or shapes (e.g. circles)
 - 3. Blobs or patches

SIFT – A Blob Feature Detection Method

- SIFT stands for Scale Invariant Feature Transform.
- Useful for image alignment (registration), object tracking and 2D object recognition.
- Proposed by Lowe in 2004 to identify interesting blob features that are independent of their size, orientation and intensity (paper on webpage).
- Output from SIFT detector are these properties of features:
 - 1. Locations of the blobs
 - 2. Scales (or sizes) of the blobs
 - 3. Orientations of the blobs
 - 4. **Signatures** or descriptors for the blobs

Recap on Gaussian Filter – noise removal

PYKC 25 Feb 2025

1st Derivative of Gaussian – Edge detection

PYKC 25 Feb 2025

2nd Derivative of Gaussian – Edge detection

PYKC 25 Feb 2025

Lecture 10 Slide 17

Different types of Blobs in 1D

Normalized 2nd Derivative of Gaussian

Effect of changing σ on Normalized 2nd Derivatives

PYKC 25 Feb 2025

Characteristic Scale of Blobs

PYKC 25 Feb 2025

Characteristic Scale Measures Size of a Blob

- Characteristic Scale: The σ value at which σ -normalised 2nd derivative reaches its peak value.
- Characteristic Scale is a valid measure of the SIZE of the blob. That is:

$$\frac{size \ of \ blob \ A}{size \ of \ blob \ B} \approx \frac{\sigma_A^*}{\sigma_B^*}$$

Summary on Steps of Blob Detection in 1D

1. Given a 1D signal f(x), convolve it with σ -normalized 2nd derivative function:

Compute:
$$\sigma^2 \frac{\partial^2 n_\sigma}{\partial x^2} * f(x)$$
 at different scales $(\sigma_0, \sigma_1, \dots, \sigma_k)$.

2. Find
$$(x^*, \sigma^*) = \max_{(x,\sigma)} \left| \sigma^2 \frac{\partial^2 n_\sigma}{\partial x^2} * f(x) \right|$$

- **3**. Blob position = x^*
- **4.** Blob size = σ^*

Blob Detection in 2D

For 2D image *I*(*x*, *y*), use Normalized Laplacian of Gaussian (NLoG) for blob detection:
Gaussian
LoG
NLoG

Location of blobs found by Local Extrema after applying NLoG at many scales.

Example of Detecting an Interesting Blob

Source: Lindeberg

Example of Detecting a non-blob

Source: Lindeberg

Summary on Steps of Blob Detection in 2D

- 1. Given an image I(x, y), convolve it with *NLoG* at many scales of σ . Compute: $(\sigma^2 \nabla^2 n_{\sigma}) * I(x, y)$ at different scale $(\sigma_0, \sigma_1, ..., \sigma_k)$.
- 2. Find $(x^*, y^*, \sigma^*) = \max_{(x, y, \sigma)} |(\sigma^2 \nabla^2 n_\sigma) * I(x, y)|$
- **3**. Blob position = (x^*, y^*)
- **4**. Blob size = σ^*

DoG is fast approximation of NLoG

- Is there a faster way to compute NLoG?
- Difference of Gaussian (DoG):

$$DoG = (n_{s\sigma} - n_{\sigma}) \approx (s - 1)\sigma^2 \nabla^2 n_{\sigma}$$

• s is different multipliers (octave) of σ .

NLoG

Extracting SIFT Interest Points (1)

Image I(x, y)

Extracting SIFT Interest Points (2)

Difference of Gaussians (DoG) $\approx (s-1)\sigma^2 \nabla^2 S(x, y, \sigma)$

Find peaks (extrema) in every 3x3 grid Candidates for Interest Point

Source: Lowe

Extracting SIFT Interest Points (3)

Source: Lowe

Example of SIFT Interest Points Detector

SIFT Scale Invariance

Lecture 10 Slide 33

Detect Feature Orientation

Image gradient directions is calculated by:

$$\theta = \tan^{-1} \frac{\partial I / \partial y}{\partial I / \partial x}$$

- Build histogram of direction for every pixel (8 directions).
- Principle Orientation is the one with highest count.

SIFT Rotation Invariance

- Correct rotation based on principal orientation.
- We can now match objects of different scale and different orientation.

SIFT Descriptor (signature)

• It is invariant to Rotation, Scaling and Brightness.

Matching of SIFT Descriptors

- Goal, match two SIFT features from two images, with descriptors H₁(k) and H₂(k). (These are histograms of orientations.)
- Possible measures:
 - 1. L2 Distance:

$$d(H_1, H_2) = \sqrt{\sum_k (H_1(k) - H_2(k))^2}.$$
 (Smaller d = better match.)

2. Normalized Correlation:

$$d(H_1, H_2) = \frac{\sum_k [(H_1(k) - \overline{H_1})(H_2(k) - \overline{H_2})]}{\sqrt{\sum_k (H_1(k) - H_1)^2} \sqrt{\sum_k (H_2(k) - H_2)^2}},$$

where $\overline{H_i} = \frac{1}{N} \sum_{k=1}^{N} H_i(k)$. (Larger d = better match.)

3. Intersection:

$$d(H_1, H_2) = \sum_k \min(H_1(k), H_2(k))$$

(Larger d = better match.)

SIFT Results: Scale Invariance

SIFT Results: Rotation Invariance

Photo Stitching using SIFT (1)

Photo Stitching using SIFT (2)

SIFT for tracking

Matlab Support for Feature Detection

- Many other feature detection methods have been proposed since Lowe's paper in 2004.
- Here are the different algorithms that are implemented in Matlab, some of these are extensions to SIFT.

Detector	Feature Type	Function	Scale Independent
FAST [1]	Corner	detectFASTFeatures	No
Minimum eigenvalue algorithm [4]	Corner	detectMinEigenFeatur	No
Corner detector [3]	Corner	detectHarrisFeatures	No
SIFT [14]	Blob	detectSIFTFeatures	Yes
SURF [11]	Blob	detectSURFFeatures	Yes
KAZE [12]	Blob	detectKAZEFeatures	Yes
BRISK [6]	Corner	detectBRISKFeatures	Yes
MSER [8]	Region with uniform intensity	detectMSERFeatures	Yes
ORB [13]	Corner	detectORBFeatures	No

PYKC 25 Feb 2025